2022 年中华医学科技奖候选项目/候选人 公示内容

推荐奖种	青年科技奖(非基础医学类)
项目名称	新型智能载体逆转肿瘤耐药关键技术创新和应用
推荐单位 /科学家	华中科技大学
推荐意见	肿瘤化疗耐药是临床肿瘤治疗亟待解决的难题之一。针对肿瘤化疗耐药机制不清、药物输送效率低、以及缺乏有效治疗策略的关键问题,该项目在国家自然科学基金及湖北省杰出青年基金等支持下,发现一系列肿瘤耐药重要靶点,发明两大类智能载药系统,创新性提出三种逆转耐药新策略,实现了核心理论、关键技术、治疗方法的突破。建立了"新靶点—新载体—新策略"的"基础到应用"转化创新体系,取得以下主要成果:
项目简介	肿瘤耐药是化疗失败及肿瘤复发主要原因之一,与约90%肿瘤病人死亡相关。耐药肿瘤治疗难点在于: 1) 肿瘤耐药机制复杂、缺少有效逆转耐药新靶点; 2) 体内多重生理屏障阻碍化疗药物递送,肿瘤药物蓄积度极低,限制疗效并促进耐药进展; 3) 严重缺乏有效治疗策略。鉴于此,该项目从三方面探索创新: 1) 系统解析耐药机制; 2) 发明两大类具有自主知识产权的智能载药系统; 3) 提出三种治疗新策略,有效逆转肿瘤耐药。建立"新靶点-新载体-新策略"从基础到应用的自主创新体系,实现核心理论、关键技术、治疗方法的突破。成果如下: 1. 探明肿瘤耐药新机制和治疗新靶点。①突破耐药细胞研究的技术瓶颈,建立活体单细胞成像新技术,为逆转肿瘤耐药研究提供新工具。②解析一系列耐药关键蛋白和耐药核心分子网络,为克服肿瘤耐药提供新靶点。③系统揭示微环境促进肿瘤耐药关键机制,为破解耐药提供新方向。成果发表 SCI 文章 21 篇,授权发明专利 4 项。Science 等撰文高度肯定新靶点的潜在临床价值,为克服肿瘤耐药奠定重要理论基础。 2. 发明两类适用于耐药肿瘤治疗的智能载体。①发明"亚细胞器"靶向的"阀门"控释载体,高效递送化疗药物。针对化疗药物在肿瘤部位难以蓄积,根据耐药肿瘤微环境特点,首次建立天然蛋白智能药物控释新方法,突破多重生理屏障,实现药物高效递送。②发明功能"定制"型智能载体,功能模块"按需"拼接,实现病灶区迅速有效富集药物。成果发表 SCI 文章 23 篇;授权发明专利 3 项。Chemical Reviews 等撰文肯定相关成果的创新性:"为耐药肿瘤治疗提供了安

全高效的递送工具";工作获哈佛大学 Mooney 院士高度评价。

3. 创新结合耐药机制和智能载体,提出"新化疗+"理念,创制三种化疗新策略。①针对化

疗诱发残余肿瘤耐药的棘手问题,提出"化疗+抗炎"、"化疗+免疫代谢调节"等双重靶向策略,同时破解耐药和复发难题,显著提高化疗疗效(5 倍以上),减少肿瘤复发。②提出重塑药物敏感性策略,抑制耐药关键蛋白,使失效化疗药物再起效,临床推广,安全可行。③针对临床抗耐药治疗模式单一、疗效有限问题,提出近红外光介导的多模态治疗新策略,创制低强度"光热-光动力学"与化疗联合的多模态治疗,扩大光热治疗的临床适用范围,使原来的禁忌症变为适应症,显著改善化疗效果(临床前耐药肿瘤抑制率从 10%提升至 80%)。成果发表 SCI 文章 28 篇,授权发明专利 6 项。获美国肿瘤免疫学会主席 Weiping Zou 教授高度评价:"在肿瘤耐药领域取得了重要创新"。

该项目发表 SCI 文章 152 篇(包括 Gut、JACS、Advanced Science、Nature Protocols等),他引 3500 余次;主要完成人通讯或第一作者文章 81 篇,已申请发明专利 37 项,已授权 20 项。五年生存率提高 50%(从平均水平的 45%提升至 68%,5260 例结直肠肿瘤),证明相关技术的安全性、有效性和和可行性。创新理念在武汉协和医院、复旦大学中山医院等全国二十家大型医院及科研机构推广,有力提升我国肿瘤耐药领域治疗水平。

代表性论文目录

	论文名称	刊名	年,卷(期) 及页码	影响因子	全部作者(国内作者须填写中文姓名)	通讯作者(含 共同,国内作 者须填写中文 姓名)	检索 数据 库	他引总次数	通讯作者 单位是否 含国外单 位
1	TRIM28 protects CARM1 from proteasome- mediated degradation to prevent colorectal cancer metastasis	Science Bulletin	2019, 64(14): 986-997	11.78	崔金元,胡嘉,叶之兰,樊永丽,李玉琴,王国斌,王琳,	王国斌,王琳, 王征	JCR 数据 库	1	否
2	Safe and effective reversal of cancer multidrug resistance using sericin- coated mesoporous silica nanoparticle s for lysosome- targeting delivery in mice	Small	2017, 13(9):16 02567	13.28	刘佳,李琪琳,乞超兴,之为兴武,王琳,舍王王王	王国斌,王琳,王征	JCR 数库	31	哲
3	Functional extracellula r vesicles engineered with lipid- grafted hyaluronic acid effectively	Biomateri als	2019, 223: 119475	12.47	刘佳,叶之兰, 向梦居。 一种一之兰, 一种一之兰, 一种一之一, 一种一, 一种	王征	JCR 数据 库	44	否

	roverse								
	reverse cancer drug								
	resistance								
4	IL33 Promotes Colon Cancer Cell Stemness via JNK Activation and Macrophage Recruitment	Cancer Research	2017, 77(10):2 735-2745	12.70	方敏,李永奎, 黄凯,祁闪闪, 张剑, Witold Zgodzinski ,Marek Majewski, Grzegorz Wallner, S tanislaw Gozdz, Paw el Macek, Art ur Kowalik, M arcin Pasiarski ,Ewelina Grywalska ,Linda Vatan, Nis ha Nagarsheth ,李伟, Lili Zhao, Ilon a Kryczek, 王 国斌,王征, Weiping Zou, 王琳	王国斌,王征, Weiping Zou,王琳	JCR 据	95	是
5	Redox- responsive dual drug delivery nanosystem suppresses cancer repopulation by abrogating doxorubicin- promoted cancer stemness, metastasis, and drug resistance	Advanced Science	2019, 6(7):180 1987	16.80	刘佳,常炳程, 李琪琳,徐鲁 明,刘兴欣, 王国斌,王征, 王琳	王国斌,王征,王琳	JCR 数库	39	否
6	Synergized multimodal therapy for safe and effective reversal of	Small	2018, 14(31): 1800785	13.28	徐鲁明,刘佳, 奚江波,李琪 琳,常炳程, 段先明,王国 斌,王帅,王 征,王琳	王国斌,王帅, 王征,王琳	JCR 数据 库	19	否

							1		
	cancer								
	multidrug								
	resistance								
	based on								
	low-level								
	photothermal								
	and								
	photodynamic								
	effects								
	Supramolecul								
	ar modular								
	approach								
	towards								
	conveniently								
	constructing	ACS			刘佳,刘兴欣,				
	and	Applied	2018,		袁野,李琪琳,				
	multifunctio	Materials	10(31):2		常炳程,徐鲁	 王国斌,王征,	JCR		
7	ning a pH/	&	6473-	9.22	明,蔡博,乞	工画/試,工位, 王琳	数据	20	否
	redox dual	Interface	26484		超,李草,蒋		库		
	responsive	S	20404		旭林,王国斌,				
	drug				王征,王琳				
	delivery								
	nanoplatform								
	for improved								
	cancer								
	chemotherapy								
	Cell-								
	Targeting	ACS			 刘佳,徐鲁明,				
	Cationic	Applied			金阳,乞超,				
	Gene	Materials	2016,		李琪琳,张云	 王国斌,王征,	JCR		
8	Delivery	and	8(22):14	9.22	周,蒋旭林,	王琳	数据	26	否
	System Based	Interface	200-10		王国斌,王征,		库		
	on a Modular	S			王琳				
	Design								
	Rationale								
	Hydrogel								
	dual								
	delivered			8.11	张剑,王健,	王琳			
	celecoxib		2016,		宋煜,石洁, 字伟,伍刚,		JCR		
9	and anti-PD-	OncoImmun	5:2,				数据	95	否
	1	ology	e1074374		任精华,王征,		库		
	synergistica				Weiping				
	lly improve antitumor				Zou,王琳				
	immunity								
	Ultrafine Pd								
	nanoparticle								
	nanoparticie s								
	encapsulated	ACS							
	encapsulated in				双汗油 业块				
		Applied	2015,		翼江波,张艳, 工宁 工 林		JCR		
10	microporous Co304 hollow	Materials and	7(9):558	9.22	王宁,王琳,	肖菲,王帅	数据		否
		and Interface	3-90		】 张哲野,肖菲, 工帅	13.1.7/-	库		
	nanospheres for in situ				王帅				
	molecular	S							
	detection of								
	living cells					<u> </u>			

知识	产权证明目	录									
序号	类别		国	别	授权号	授权时间	知识	产权具体名称		全部发明人	
1	中国发明	专利	T	国	ZL201811627771.8	2021-07-02	瘤靶向	能巨噬细胞肿 治疗系统及其 法和应用	王征颜雯	E;王琳;黄雷; ₹茜	
2	中国发明节	专利	日	国	ZL201811290701.8	2021-08-06	构建的	种基于金-碳纳米球 建的 microRNA 检 探针及其制备方法 应用		王征;王琳;肖珩; 范慧玲;徐鲁明	
3	中国发明	专利	中	国	ZL2019102863516	2021-09-24	一种精准化腹膜粘连 动物模型的建立方法 及应用		王征	E;王琳;乞超; 暨	
4	中国发明	专利	中	国	ZL201610962104.X	2019-12-31		有胶原蛋白结 域的融合蛋白		林;王征;李永奎; H妞;张剑	
5	5 中国发明专利 中国		国	ZL201610477308.4	2019-02-01	一种具有协同抗肿瘤 特性的透明质酸修饰 的金-碳纳米球及其 制备方法与应用		王琳;王帅;王征; 奚江波;刘 佳;徐 鲁明;李琪琳;乞超; 常炳程;刘兴欣			
6	5 中国发明专利 中国		国	ZL201510560758.5	2017-08-22	丝胶蛋白包裹的丝胶/ 介孔硅复合型载药纳 米颗粒的制备方法		王琳;王征;刘佳;李琪琳;徐鲁明;乞超			
7	7 中国发明专利		中	国	ZL201810507821.2	2021-05-13	一种金属有机配位聚 合物包裹的天然丝胶 蛋白微球及其制备方 法和应用		王琳;王征;刘佳; 邓炎;李琪琳;万 超;付达安;袁野		
8	中国发明	专利	中	国	ZL201510043930X	2021-06-08	一种抗肿瘤制剂及其 制备方法		王琳;李永奎;方敏; 王征;张 剑;宋煜; 石洁;徐妞妞;王健		
9	中国发明节	专利	中	国	ZL2018108804198	2021-09-28	G 四聚体共价偶联 DNA 分子和 DNA 自转染试 剂盒及应用		王琳;王征;李永奎; 向梦茜;张 剑;祁 闪闪		
10	10 中国发明专利 中国		国	ZL2015100977177	2020-11-10	一种丝胶蛋白-海藻酸 盐复合水凝胶及其制 备方法		王琳;王征;张业顺; 刘佳;黄 雷;乞超; 徐鲁明;宋煜;杨文; 谢洪建;王健;张 诚			
完成人情况表											
姓名 排名		名		完成单位	工作单位		职称		行政职务		
王征 1		1	华中科	技大学	华中科技大学		教授,主任医师		科研处副处长		
对	对本项目的 项目负责人,负责 贡献 总工作量的百分比				目的总体规划、总体设 0%。	计、总体实施和总	结,在设	该项目研发工作中	投入的	的工作量占本人	
	姓名		名		完成单位	工作单位		职称		行政职务	
王琳		2	2	华中科技大学		华中科技大学		教授		科室主任	

对本项目的	具体负责课题	题申请立项、设计、实施和总	结工作,在该项目研发工作		总工作量的百分						
贡献	比 90%。	1									
姓名	排名	完成单位	工作单位	职称	行政职务						
肖菲	3	华中科技大学	华中科技大学	教授	无						
对本项目的 贡献	参与课题设计	十,研究成果的推广与应用, -	在该项目研发工作中投入的	工作量占本人总工作量	的百分比 50%。						
姓名	排名	完成单位	工作单位	职称	行政职务						
刘佳	4	华中科技大学	华中科技大学	副研究员	无						
对本项目的 贡献	负责研究方	来的具体实施,实验数据的整 T	理,在该项目研发工作中投		作量的百分比						
姓名	排名	完成单位	工作单位	职称	行政职务						
徐鲁明	5	华中科技大学	华中科技大学	助理研究员,主管 技师	无						
对本项目的	负责研究方	案的具体实施,实验数据的整	理,在该项目研发工作中投	入的工作量占本人总工	作量的百分比						
贡献	90%。	1	1	1							
姓名	排名	完成单位	工作单位	职称	行政职务						
李琪琳	6	华中科技大学	华中科技大学	主管技师	无						
对本项目的		来的具体实施,实验数据的整 第	理,在该项目研发工作中投		作量的百分比						
贡献	90%。		T 11-24 12	TD 16	/= Then #2						
姓名 ————————————————————————————————————	排名	完成单位	工作单位	职称	行政职务 —————						
李伟	7	华中科技大学	华中科技大学	副主任医师	无						
对本项目的 贡献	成果的临床结	转化及应用推广。									
完成单位情况和	長										
单位名称	华中科技大	Ž		排名	1						
	本单位在本	项目的立项、实施和鉴定工作	中有如下贡献:	1	Į.						
	① 为本课题	的立项提供了组织支持;									
	② 为本课题	的进行提供坚定经费支持;									
对本项目的	③ 定期检查	 ③ 定期检查本课题的进展程度、听取汇报、并督促完成;									
贡献	④ 对项目经	费的使用执行严格的财务管理	! ;								
	⑤ 提供论文	版面费;									
	⑥ 组织课题	的鉴定和成果申报。									
	 对本研究推/	 对本研究推广应用提供了组织上的保证及经费收支上的管理与支持。									