2025年中华医学科技奖候选项目/候选人公示内容

推荐	孛奖种	医学科学	技术奖(基础	出医学类)							
项目	目名称	恶性肿瘤精准诊疗的多模态纳米科技平台研发									
•	孹单位 ⋅学家	国家卫生	健康委员会								
代表	1 竹 竹 で で で で で で で で で で で で で	突种纳够主一景本多测项与③项发的米显体像在送在建纳A 良体协体范目破实米在,体。项模"目可。目电闭平著化与恶系研、米 V 好瘤同系式 录"体科诊缺化。目态的围视建已机环台提纳治性统究体医、的为验评、早瘤技断乏闭。聚成完绕反"取驱光,升米疗肿。基内学」成主证价新	发中在、面环 焦像整三馈多得动动实其治;瘤 础外交C果攻。流工 现仍肿成向设 "功技个;病多的力现稳疗⑺中 方成叉n转方同程具 水面瘤像临计 恶能术核⑵,项红治肝定策 的 面像领tr化向时,和 笔情与床; 性及链心 前细疗癌性略设拓 ,、域(li),注争新 向交图疗对是 瘤打实材发场原药约原药(高应 目制发R原真产用	差有学多的多。准遵现底新景创物,位全的度如,国则发色底层平乡的。 医有学多的多 准药从开型适性系打肿性构支; 队究系。地中接具毒、的节米焦 诊机机:自配进统通瘤;建化® 依与列。潜识口有副耐潜实平于 疗制制①供的展,日的⑤主H 托动高等力别标自 的说:"我力现台单一的的研》能术,实常精,动AI提 医物水,。、准主	"的频日集原一,纳系究构递后形现行准建识EL出,家模平部项术化知————————————————————————————————————	其瓶含见皮所找一平长开态,控个电离(癌转平板 斗介仓果拖顶 又 全期。脱具然二一 台疗发响突与关刺管 剪移台膜 基完,完程复动核	F来挑调仍治以《构立送递电平块放转超免肽丙凝》课系,专乳免(品来挑调仍治以《构立到送依台与的化分疫修递信》,因此并腺疫如,疫。功在环配》具盖术系赖,科新通自点纳送号》,因此并癌协H为发。能关节复》备肿后统,支学路路自点纳效策》已队t得、同A我国,可键割杂,模瘤理实现诊现;③祛极平解,立心t国癌临(恶向,编短裂多,块"证明实现诊现;③祛极平解,立心t国癌临(恶	等一程板,变一化只勺见无う:⑵ 【几本台瓦 】 起成el、床方性 】 治 、:缺的 结一统瘤、环)建建的,实,发 盖长(孔癌景水瘤疗 递一乏肿 构成仓乡可打摄了自研摄实推才 盖长(孔癌景水瘤	取 送是可廇 、像引笑了技是双目膊是见动亡 材期S从等,反的 【得 可以视异 靶(新键控术出以供替出早动后 料深 儿常推膜精 控"化质 向递 率、体基人能佐剪期纳微 合耕n认高等)详 学材:性	展,优料靶生,只一,精环建摩活控递驱匿基瘤,太神 O定弱好进疗,,优别有的,别干,准治设擦动 R 药动灶因智,探诊 S C 具死台入提位,为了反床,力一,识疗。电驱 C 系的的疗能,针疗 i 备实块 P 新多,能为馈场,、监,别;,纳动纳统个成法递,构与,备实块 P 新多,能为馈场,、监	
序号	论》	文名称	刊名 	年,卷(期) 及页码	影响 因子	全部作者(国内作者须填写	通讯作者(含 共同,国内作	检索 数据	他引 总次	通讯作者 単位 ———————————————————————————————————	
						中文姓名)	者须填写中文	库	数	是否含	

						姓名)			国外单位
1	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator	Advanced Functiona l Materials	2019, 29(41): 1808640.	18.5	赵青、李茂、明文、明文、明文、明、明、明、明、明、明、明、明、明、明、明、明、明、明、明	魏炜,李舟	ISI Web of Scie nce(SCI 网络 版)	110	否
2	Human motion driven self- powered photodynamic system for long-term autonomous cancer therapy	ACS Nano	2020, 14(7): 8074- 8083.	15.8	刘卓,胥玲玲, 郑强,康勇, 石波璟,蒋东 杰,李虎,曲 学铖,樊瑜波, 王中林,李舟	樊瑜波,王中 林,李舟	ISI Web of Scie nce(SCI 网络 版)	78	否
3	Shape Designed Implanted Drug Delivery System for In Situ Hepatocellula r Carcinoma Therapy	ACS Nano	2022, 16(5): 8493- 8503.	15.8	赵君之, 本	熊斌,李舟	ISI Web of Scie nce(SCI 网络 版)	23	否
4	Preparation, characterizat ion and in vitro-in vivo evaluation of bortezomib supermolecula r aggregation nanovehicles	Journal of Nanobiote chnology	2020, 18: 1- 12.	10.6	陈宽 蒙語 勇用 男子 大學 一次	张灵敏,林志 强,付纪军	ISI Web of Scie nce(SCI 网络 版)	12	否
5	Prognostic alternative mRNA splicing signature and a novel biomarker in triple- negative breast cancer	DNA and Cell Biology	2020, 39(6): 1051- 1063.	2.6	刘强,王翔宇, 孔祥溢,杨雪, 程苒,张文祥, 高鹏,陈力, 王仲照,方仪, 王靖	王仲照,方仪, 王靖	ISI Web of Scie nce(SCI 网络 版)	11	否
6	A specific peptide ligand-modified lipid nanoparticle carrier for the inhibition of tumor metastasis growth	Biomateri als	2013, 34(3): 756-764.	12.8	王朝辉,于洋, 代文兵,崔景 荣,吴后南, 袁兰,张王学清, 正学清,近,张 强	张强	ISI Web of Scie nce(SCI 网络 版)	37	否

7	The transition from linear to highly branched poly (β-amino ester) s: Branching matters for gene delivery	Science Advances	2016, 2(6): e1600102	11.7	周德重, Lara Cutlar,高 永胜,王玮, Jonathan O'Keeffe- Ahern,Sea n McMahon,B lanca Duarte,Fe rnando Larcher,B rian J. Rodriguez ,Udo Greiser,王 文新	王文新	ISI Web of Scie nce(SCI 网络	170	否
8	The microneedles carrying cisplatin and IR820 to perform synergistic chemo- photodynamic therapy against breast cancer	Journal of Nanobiote chnology	2020,18(1):146() :341-353	12.6	付文明余额然 吴村东李楚陈,余独活,月细洁,丹雪霞党,丹志强,大野、大大,,大大,大大,大大,大大,大大,大大,大大,大大,大大,大大,大大,大大	韦敏燕,林志 强,雷雪萍	ISI Web of Scie nce (SCI 网络 版)	60	否
	 breast cancer 								
	スピゴスロ 水 一 被引代表性							 引文发表	
序号	论文序号	引	文名称/作者		引文刊名		(年月日)		
1	1-1	Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. Giorgio Conta, Alberto Libanori, Trinny Tat, Guorui Chen,		Advanced Materials		2021年05月20日			
2		Jun Chen A Fully Integrated Conformal Wearable Ultrasound Patch for Continuous Sonodynamic Therapy. Faxing Zou, Yong Luo, Wenxuan Zhuang,		Advanced Materials		2024年 08月 06日			
	1-2	Continuous Therapy. F Luo, Wenxu	Sonodynam: axing Zou,		Advanced Ma ⁻	terials	20.	24年08	月 06 日
3	1-2	Continuous Therapy. F Luo, Wenxu Tailin Xu Recent Pro Applicatio Powered Mi Lingfei Qi Yuan Wang,	Sonodynam: axing Zou, an Zhuang, gress in n-Oriented croelectron , Lingji Ko Juhuang So Zutao Zhang	Self- nics. ong,	Advanced Mar Advanced End Materials			24年08	

		Sono	dynamic Activity of Dimensional Covalent					
		Heter Oxida Ruoh Yanj	nic Framework rojunctions for Pro- ative Nanotherapy. ui Wu, Mengying Hua, ia Lu, Liang Chen, Yu , Zhongqian Hu	International Edi	tion			
5	1-5	Divid Targo Tripi Canco Nedei Vule	de and Conquer— eted Therapy for le-Negative Breast er. Milica ljković, Ana tić, Katarina Mirjačić inović	International Jou of Molecular Scien	2025	年 02 月 07 日		
6	1-6	Nanor Pela: Ramor Fraul	Diverse Applications of Nanomedicine. Beatriz Pelaz, Christoph Alexiou, Ramon A. Alvarez-Puebla, Frauke Alves, Anne M. Andrews, Sumaira Ashraf,		2017	年 03 月 14 日		
7	7 1-7		erativity Principles elf-Assembled medicine. Yang ʻiguang Wang, Gang g, Jinming Gao	Chemical Reviews	2018	2018年06月13日		
8	8 1-8 5 F T L		ifunctional clatforms as cascade- consive drug-delivery iers for effective rgistic chemo- codynamic cancer tment. Fan Li, Yan g, Miaochen Wang, Xing Fen Zhao, Xu Wang, Sun, Wantao Chen	Journal of Nanobiotechnology		年 05 月 17 日		
完成	龙人情况表							
	姓名	排名	完成单位	工作单位	职称	行政职务		
	孔祥溢	1	 中国医学科学院肿瘤医院 	中国医学科学院肿瘤医 院	副主任医师	青年理论学习小 组组长		
		│ │疗″关键路径 │	文力于乳腺肿瘤精准诊疗纳米科 ,取得多项原创性成果。团队:	先后设计多种乳腺癌纳米药	为物系统,包括用于 这	逆转 HER2 阳性乳		
X寸 	本项目的		的 PFC(si-HOTTIP/GOD)@MnO2 和靶向三阴性乳腺癌的 ZnO2@AFr(Fe-NGA)-PPD,分别获"创青 根奖与金奖;研发 CQD-Mn ²⁺ @MIL-100(Fe)-TZ 前哨淋巴结多模态探针,获中国癌症基金会及北京					
	贡献		与金奖;研发 CQD-Mn²+@MII 创新提出乳腺癌术后重建用纳	` ,				
			比京市"优促计划"项目。	220- MIM ITA FT P 13 JUN 70	., ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,			
	姓名	排名	完成单位	工作单位	职称	行政职务		
	王翔宇	2	中国医学科学院肿瘤医院	中国医学科学院肿瘤医	主治医师	无		

Chemistry Empowers

			院						
	主要参与三阶]性乳腺癌(TNBC)免疫靶点		└────────────────────────────────────	AS)的预后评分				
对本项目的	体系,5年A	UC 达 0.96,显著优于临床传统	·模型;系统挖掘剪接因子	调控网络,明确 CCL:	16 剪接变异在				
	TNBC 免疫逃逸中的关键作用。在此基础上,协助设计 CCL16 剪接恢复与免疫调控融合的纳米干预系统,								
贡献	联合 PD-1 抑	制剂显著延长生存期。相关成身	果作为本项目从"剪接图谱·	-新靶点-递药干预"闭	用环路径的重要构				
	件,强化了组	米平台的适配精准性与机制针	对性,在生物信息学与药物	物递送交叉融合方面发	 定挥关键作用。				
姓名	排名	完成单位	工作单位	职称	行政职务				
张文祥	3	中国医学科学院肿瘤医院	中国医学科学院肿瘤医院	主治医师	无				
	主要承担 TN	BC 免疫剪接靶点的干预递送系	统开发与功能验证,联合 [,]	构建 CLP 纳米脂质体	平台,协同递送				
对本项目的	剪接优化构建	建体及稳定元件,有效恢复 CCI	L16 表达、增强 CD8+T 细胞	包浸润、提升免疫治疗	响应率。在剪接				
	因子网络构建	建中,重点参与 SF 因子的筛选与	与功能注释,明确其在调 控	E AS 事件与肿瘤预后。	中的多重作用,				
贡献	推动剪接评分	} 体系的临床价值评估。其工作	实现从靶点发现到递药干	硕的全流程落地,扩 原	民了本项目纳米技				
	术在免疫调控	2、剪接治疗方向的应用场景与	转化潜力。	r					
姓名	排名	完成单位	工作单位	职称	行政职务				
李舟	4	中国科学院北京纳米能源与	中国科学院北京纳米能	教授	所长助理/系主				
3-7:3		系统研究所	源与系统研究所	3/12	任				
	+ \ - + \ - + - + - + - = =								
_		ī目"自供能精准递药"系统核心	, 技术构建,首次提出磁性		-				
动表面目的	胞药物释放系	页目"自供能精准递药"系统核心 系统,实现植入式、无源电控精	→技术构建,首次提出磁性 准给药;建立以人体运动;	为驱动源的光动力治疗	疗系统,突破传统				
对本项目的	胞药物释放系 PDT 对外源值	项目"自供能精准递药"系统核心 统,实现植入式、无源电控精 共能依赖,显著提高治疗便捷性	□技术构建,首次提出磁性 i准给药;建立以人体运动; =与患者依从性;设计 iTEN	为驱动源的光动力治疗 NG 装置联动红细胞递	疗系统,突破传统 药平台,在肝癌				
对本项目的 贡献	胞药物释放系 PDT 对外源值 原位模型中等	项目"自供能精准递药"系统核心系统,实现植入式、无源电控精 铁能依赖,显著提高治疗便捷性 以现高效、低毒治疗。相关成果	p技术构建,首次提出磁性 i准给药;建立以人体运动 三与患者依从性;设计 iTEN 是发表于《Adv Funct Mater》	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶:	京系统,突破传统 药平台,在肝癌 级期刊,并被视				
	胞药物释放系 PDT对外源的 原位模型中等 为"电响应纳	证目"自供能精准递药"系统核心系统,实现植入式、无源电控精 铁能依赖,显著提高治疗便捷性 可见高效、低毒治疗。相关成果 米治疗"的代表性技术。其工作	p技术构建,首次提出磁性 i准给药;建立以人体运动 三与患者依从性;设计 iTEN 是发表于《Adv Funct Mater》	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶:	京系统,突破传统 药平台,在肝癌 级期刊,并被视				
贡献	胞药物释放系 PDT 对外源值 原位模型中等 为"电响应纳中的前沿拓展	证目"自供能精准递药"系统核心 统,实现植入式、无源电控精 、	p技术构建,首次提出磁性 i准给药;建立以人体运动: 与患者依从性;设计 iTEN 是发表于《Adv Funct Mater》 E推动了电控、柔性、生物	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶: 耦合微能源系统在智能	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台				
	胞药物释放系 PDT对外源的 原位模型中等 为"电响应纳	证目"自供能精准递药"系统核心系统,实现植入式、无源电控精 铁能依赖,显著提高治疗便捷性 可见高效、低毒治疗。相关成果 米治疗"的代表性技术。其工作	p技术构建,首次提出磁性 i准给药;建立以人体运动 三与患者依从性;设计 iTEN 是发表于《Adv Funct Mater》	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶:	京系统,突破传统 药平台,在肝癌 级期刊,并被视				
贡献	胞药物释放系 PDT 对外源值 原位模型中等 为"电响应纳中的前沿拓展	证目"自供能精准递药"系统核心 统,实现植入式、无源电控精 、	p技术构建,首次提出磁性 i准给药;建立以人体运动: 与患者依从性;设计 iTEN 是发表于《Adv Funct Mater》 E推动了电控、柔性、生物	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶: 耦合微能源系统在智能	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台				
姓名 林志强	胞药物释放系 PDT 对外源位原位模型中等为"电响应纳中的前沿拓展排名	证目"自供能精准递药"系统核心系统,实现植入式、无源电控精 、统,实现植入式、无源电控精 、能依赖,显著提高治疗便捷性 、现高效、低毒治疗。相关成果 、米治疗"的代表性技术。其工作 、完成单位	p技术构建,首次提出磁性 注注给药;建立以人体运动 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 推动了电控、柔性、生物 工作单位 北京大学	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶 耦合微能源系统在智能 职称 研究员	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台 行政职务				
贡献 姓名	胞药物释放系 PDT 对外源位原位模型中等为"电响应纳中的前沿拓展排名 5 聚焦小分子药	证目"自供能精准递药"系统核心系统,实现植入式、无源电控精 、统,实现植入式、无源电控精 、能依赖,显著提高治疗便捷性 、现高效、低毒治疗。相关成果 、米治疗"的代表性技术。其工作 、完成单位 、北京大学	对技术构建,首次提出磁性 注注给药;建立以人体运动 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 主推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯	为驱动源的光动力治疗NG 装置联动红细胞递 》《ACS Nano》等顶 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台 行政职务 无				
姓名 林志强	胞药物释放系PDT对外源的原位模型中等为"电响应纳中的前沿拓展排名	国"自供能精准递药"系统核心系统,实现植入式、无源电控精 、统,实现植入式、无源电控精 、性能依赖,显著提高治疗便捷性 、现高效、低毒治疗。相关成果 、米治疗"的代表性技术。其工作 、完成单位 、北京大学 、物递送的可注射与可控释放难	p技术构建,首次提出磁性 注给药;建立以人体运动 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 主推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放,	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台 行政职务 无 三元自组装策略 参与评估其在				
贡献 姓名 林志强 对本项目的	胞药物释放系 PDT 对外源位原位模型中等为"电响应纳中的前沿拓展排名 5 聚焦小分子药开发 BTZ-NP 4T1 模型中的	国"自供能精准递药"系统核心系统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性实现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作。完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下	p技术构建,首次提出磁性 注注给药;建立以人体运动。 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、证	为驱动源的光动力治疗NG 装置联动红细胞递 NG 装置联动红细胞递 》《ACS Nano》等顶 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台 行政职务 无 三元自组装策略 参与评估其在 会方案。同时协作				
贡献 姓名 林志强 对本项目的	胞药物释放系 PDT 对外源位原位模型中等为"电响应纳中的前沿拓展排名 5 聚焦小分子药开发 BTZ-NP 4T1 模型中的	语:自供能精准递药"系统核心系统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性表现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作表。 完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下 1体内富集、抗肿瘤活性及组织	p技术构建,首次提出磁性 注注给药;建立以人体运动。 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、证	为驱动源的光动力治疗NG 装置联动红细胞递 NG 装置联动红细胞递 》《ACS Nano》等顶 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台 行政职务 无 三元自组装策略 参与评估其在 会方案。同时协作				
贡献 姓名 林志强 对本项目的 贡献	胞药物释放系 PDT 对外源保原位模型中等 为"电响应纳中的前沿拓展排名 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	语:自供能精准递药"系统核心系统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作。完成单位 北京大学。物递送的可注射与可控释放难系统,在保持高载药率前提下即体内富集、抗肿瘤活性及组织强病灶的靶向递送策略开发,助	对技术构建,首次提出磁性 注给药;建立以人体运动。 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、证	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶。 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决	京系统,突破传统 药平台,在肝癌 级期刊,并被视 能纳米药物平台 行政职务 无 三元自组装策略 参与评估其在 杂方案。同时协作				
贡献 姓名 林志强 对本项目的 贡献 姓名	胞药物释放系 PDT 对外源值 原位模响 为"电响 沿拓 中的前沿名 5 聚焦 BTZ-NP 4T1 模型中的 推进术名 6	语:自供能精准递药"系统核心系统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性表现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作表。 完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下 体内富集、抗肿瘤活性及组织 病灶的靶向递送策略开发,助完成单位	p技术构建,首次提出磁性 i准给药;建立以人体运动。 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 主推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、词 力本项目在递药机制、适宜 工作单位 西安交通大学	为驱动源的光动力治疗NG 装置联动红细胞递 NG 装置联动红细胞递 NG 装置联动红细胞递 NG 装置联动红细胞递 和合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决 配性与安全性方面的多 职称	京 系统,突破传统 药 平台,在肝癌 级期刊,并被视 能纳米药 如 职 五 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一				
贡献	胞药物释放系 PDT 对外源保 原位模响应为"电响剂品 排名 5 聚焦 BTZ-NP 4T1 模型中的 推进术名 6 原创性开发部	语:自供能精准递药"系统核心统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性表现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作表。 完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下 体内富集、抗肿瘤活性及组织 病灶的靶向递送策略开发,助完成单位 西安交通大学	p技术构建,首次提出磁性 i准给药;建立以人体运动。 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 主推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、词 力本项目在递药机制、适宜 工作单位 西安交通大学 基因递送平台,解决传统约	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶。 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决 配性与安全性方面的多 职称 教授 选性非病毒载体转染效	京系统, 突破传统 药平台, 在肝癌 级期刊, 并被视 能纳米药物 职 行政 职务 无 三元 与 组 结 其 协 协 系统升 行 政 职 系统升 行 政 职 系统分 政 职 系统分 政 职 系统分 及 取 取 多				
大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	胞药物释放系 PDT 对外源保 原位模 响 沟 中的前沿 排名 5 聚焦 BTZ-NP 4T1 模型 中的 推进 排名 6 原创性 通过 Az-	语:自供能精准递药"系统核心系统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性表现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作表。 完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下 体内富集、抗肿瘤活性及组织 病灶的靶向递送策略开发,助完成单位 西安交通大学 医支化聚β-氨基酯(HPAE) 是	p技术构建,首次提出磁性 i准给药;建立以人体运动, 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 主推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、证 力本项目在递药机制、适宜 工作单位 西安交通大学 基因递送平台,解决传统约 支化结构,实现多细胞系率	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶。 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决 配性与安全性方面的 职称 教授 选性非病毒载体转染效 转染效率提升数千倍,	京 系统,突破传统				
贡献 姓名 林志强 对本页目的 黄化名 相通	胞药物科 PDT 对外源 原位模 响 治 中的前名	国"自供能精准递药"系统核心统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性品现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作品。 完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下 体内富集、抗肿瘤活性及组织 病灶的靶向递送策略开发,助完成单位 西安交通大学 医支化聚β-氨基酯(HPAE)是 B3+C2型迈克尔加成反应构建	中技术构建,首次提出磁性,注:特殊的,建立以人体运动,建立以人体运动,是一步。	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶。 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决 配性与安全性方面的 取称 教授 能性非病毒载体转染效 转染效率提升数千倍,能力。相关成果获FD	京系统, 突破传统 药平台, 在肝癌 级期刊, 并被平台 を方案 元 一				
大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	胞	国"自供能精准递药"系统核心统,实现植入式、无源电控精性能依赖,显著提高治疗便捷性品现高效、低毒治疗。相关成果米治疗"的代表性技术。其工作品。 完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下 体内富集、抗肿瘤活性及组织 病灶的靶向递送策略开发,助完成单位 西安交通大学 医支化聚β-氨基酯(HPAE) 是3+C2型迈克尔加成反应构建 COL7A1 功能恢复,首次使非病	p技术构建,首次提出磁性 i准给药;建立以人体运动。 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 "推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、词 力本项目在递药机制、适宜 工作单位 西安交通大学 基因递送平台,解决传统约 支化结构,实现多细胞系统 专化结构,实现多细胞系统。 适。HPAE 系统已衍生应用于	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶。 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决 配性与安全性方面的 取称 教授 能性非病毒载体转染效 转染效率提升数千倍,能力。相关成果获FD	京系统,突破传统 药平台,在肝癌 级期刊,并物平台 无 元 与 组 估 时 同 会方案。 明 行 下 的 医 的 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不				
大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	胞	国"自供能精准递药"系统核心系统,实现植入式、无源电控精性、统,实现植入式、无源电控精性、现高效、低毒治疗。相关成果、米治疗"的代表性技术。其工作。 完成单位 北京大学 物递送的可注射与可控释放难系统,在保持高载药率前提下 体内富集、抗肿瘤活性及组织 病灶的靶向递送策略开发,助完成单位 西安交通大学 医支化聚β-氨基酯(HPAE) 是于B₃+C₂型迈克尔加成反应构建 COL7A1 功能恢复,首次使非振力转让并被《Science》正面报道	p技术构建,首次提出磁性 i准给药;建立以人体运动。 与患者依从性;设计 iTEN 发表于《Adv Funct Mater》 "推动了电控、柔性、生物 工作单位 北京大学 题,提出基于鞣酸-聚乙烯 实现肿瘤微环境响应释放, 分布,构建稳定、安全、词 力本项目在递药机制、适宜 工作单位 西安交通大学 基因递送平台,解决传统约 支化结构,实现多细胞系统 专化结构,实现多细胞系统。 适。HPAE 系统已衍生应用于	为驱动源的光动力治疗 NG 装置联动红细胞递 》《ACS Nano》等顶。 耦合微能源系统在智能 职称 研究员 吡咯烷酮-硼替佐米的 有效降低心肝毒性。 通用的实体瘤递药解决 配性与安全性方面的 取称 教授 能性非病毒载体转染效 转染效率提升数千倍,能力。相关成果获FD	京 系统,突破传统 药 平台,在肝癌 级期刊,并物平台 老 方 来 一				

			究所						
	国终到 晚痘污			TMTIS) 系统 守F	17对将医结移性的				
				·					
对本项目的	主动靶向和精准治疗。动物实验表明 TMT-LS 在肺转移模型中富集效率提高 4 倍以上,联合药物递送可显著								
贡献		可开降低较多发生率。 IMI							
	与 の の の の の の の の の の の の の		一桶,在干炒 束哈龙供大链!	亚达胜伏万朵,开拓庞	主乡约初组口书				
 姓名	上 影像照古場	₹。 	工作单位	 职称	 行政职务				
ж т	141-70	元以丰世		4六170	11以积为				
王靖	8	中国医学科学院肿瘤医院	院	主任医师	科主任				
	在本项目中重点参与了基于新藤黄酸(NGA)的三阴性乳腺癌(TNBC)纳米药物系统设计与机制研究,推								
	动了中药分子	² 在现代精准治疗中的应用。王	教授分析了 NGA 在 TNBC	细胞中的分子靶点及	抗肿瘤机制,提				
对本项目的	出通过改善肿	中瘤乏氧微环境增强药效的策略	。在此基础上,王靖教授	办助设计了基于 ZnO₂	与 NGA 协同构				
贡献	建的 pH 响应	式多功能纳米药物 ZnO2@AFr(Fe-NGA)-PPD,重点进行	了载药稳定性、生物和	到用度提升及抑瘤				
	活性验证的实	C验工作。该系统显著提高了 N	GA 的递送效率和靶向性,	为中药与纳米技术结	合提供了创新范				
	例。该成果药	快得了"创青春"全国青年创新大	、赛金奖,并推动药物系统 「	纳入 TNBC 个体化治	<u></u> 疗策略研究。				
姓名	排名	完成单位	工作单位	职称	行政职务				
方仪	9	中国医学科学院肿瘤医院	中国医学科学院肿瘤医院	主任医师	无				
	在本项目中参	L 参与构建了三阴性乳腺癌可变剪	110	L 并主导部分临床样本I	 的外显子数据分				
	析与剪接图谱		剪接因子与免疫相关分子的	的共表达网络构建,力	计其在发现				
对本项目的	CCL16 剪接3	变异与预后关联的过程中发挥了	'关键作用。她进一步参与	了剪接优化构建体及	其纳米递送系统				
贡献	的构建与体内	n实验验证,推动了"剪接靶点》	发现–递送平台构建–功能恢	灰复验证"完整路径的	形成。此外,方				
	仪还参与 MC)F 平台联合调控剪接因子的设计	十方案,为剪接网络多靶点	(干预提供理论支持。	该研究为 TNBC				
	精准分型与个	体化治疗提供新思路,相关成	果拓展了 RNA 调控机制在	纳米治疗中的应用前	景。				
姓名	排名	完成单位	工作单位	职称	行政职务				
陈力	10	中国医学科学院肿瘤医院	中国医学科学院肿瘤医院	医师	无				
	在本项目中参	□ 与开发了术后微残瘤精准治疗		 系统,重点参与了紫村	 彡醇纳米晶体				
	(PNCs)制i	备与膜披覆技术的实验优化。他	也在血小板膜提取、关键膜	蛋白保留与纳米系统	稳定性分析方面				
对本项目的	作出突出贡献	状,协助完成了血小板膜仿生 功	能验证实验,包括细胞黏膜	附、免疫逃逸、术后凝	疑血环境识别等关				
贡献	键验证工作。	陈力同时参与了术后微残瘤动	物模型构建与药效学验证,	,证实该系统可精准富	富集于术后病灶区				
	域,实现高效	文 杀伤并显著延长生存期。该项	成果为术后辅助化疗提供给	纳米技术新路径,并被	皮纳入本团队构建				
	的 HER2 阳性	乳腺癌多模态探针平台中,拓	展了术中-术后诊疗一体化	系统的适用性。					
姓名	排名	完成单位	工作单位	职称	行政职务				
付纪军	11	广州医科大学	广州医科大学	副教授	无				
对本项目的	付纪军教授在	E本项目中聚焦于小分子药物的	递送系统构建与载药性能	上 是升,重点参与了基于					
贡献	略的硼替佐米	长纳米系统(BTZ-NP)开发与	佥证工作。他在载药率调 招	2、粒径稳定性评估及	pH 响应机制分析				
	方面提供了核	该心技术支持,参与完成了 BTZ	乙与天然多酚鞣酸、PVP 之	间相互作用的结构解	析工作,推动建				
	立"核壳型三	元超分子结构"的理论基础。在	E动物药效学实验中,付纪	军协助完成了 BTZ-N	P 的组织分布、毒				

	性评价及抗瘤	罶机制验证,证实该系统可在显	著降低毒副作用的前提下	是升治疗效果。他还参	参与了将 BTZ-NP					
	平台与本项目	HER2 纳米探针协同整合的方	案制定,为小分子药物的 *	情准递送与组合治疗 扬	索了新路径。					
姓名	排名	完成单位	工作单位	职称	行政职务					
赵超超	12	中国科学院北京纳米能源与	中国科学院北京纳米能	讲师	无					
	赵超超在本项	┃ <u>系统研究所</u> 项目中参与了"摩擦电自供能递	<mark> 源与系统研究所</mark> 药平台"的构建与验证,涉	l 及植入式磁性摩擦电纟	L 纳发电机					
-1-1	(MTENG)	、运动驱动光动力治疗系统(t	s-PENG)和电控红细胞药	物平台(iTENG)等打	支术方案,负责					
对本项目的 	│ │ 多个关键元件	‡的材料优化、电性能测试与器	。 恰组装工作。在 MTENG)	系统中,赵超超优化了	了摩擦层材料和封					
贡献	装结构,提升了输出稳定性,并协助构建了"MTENG—红细胞载药系统"联合应用模型,验证了电控可逆药									
	物释放机制。他还参与了 ts-PENG 与 LED 光源集成方案的设计,推动了光动力系统在动物实验中的应用。									
姓名	排名	完成单位	工作单位	职称	行政职务					
刘卓	13	北京航空航天大学	北京航空航天大学	副教授	无					
	在本项目中承	、 《担多项电刺激响应系统的结构	」 设计与体内功能验证任务,	,是 MTENG、ts-PEN	IG 与 iTENG 系统					
	的联合搭建者	首之一。她重点参与了多种结构	内构型的摩擦电发电机的电缆	渝出性能优化和稳定性	生评估,并在红细					
 对本项目的	 胞负载药物系统的膜穿孔机制研究中提出了"低压电场促通透-可逆修复"的理论模型,解决了药物释放过程 									
	 中生物相容性与控制效率之间的矛盾问题。同时,她还参与了运动驱动光动力治疗系统中脉冲照射参数的调									
贡献 	 控与动物建模工作,推动该系统在实体瘤动物模型中实现"长时程–低剂量–远程可控"的治疗效果。刘卓在 									
	 多个子系统技术之间起到了桥梁作用,为纳米材料与微能源系统的融合提供了有效方案,相关研究成果发表 									
	于代表性期刊	J.								
姓名	排名	完成单位	工作单位	职称	行政职务					
刘强	14	中国医学科学院肿瘤医院	中国医学科学院肿瘤医院	医师	无					
	项目中"基于	l mRNA 可变剪接事件的三阴性		L	 的重要参与者,					
	 承担了剪接因	3子表达模式与免疫微环境关联	性分析的工作。在构建 AS	。 评分体系过程中,他	完成了大量的生					
 对本项目的	信数据挖掘与临床指标整合分析,并参与撰写 AS-剪接因子共表达网络部分,识别出关键调控节点如									
	SRSF1、HNRNPK 等。此外,刘强还参与了以 CCL16 剪接变异为靶点的纳米递送系统在动物模型中的药效									
贡献	验证工作,协助完成了联合免疫治疗策略的实验设计。他的工作推动该剪接干预体系从基础机制研究走向动									
	物验证阶段,为 TNBC 分型与个体化治疗奠定了理论和技术基础。相关成果为本项目"纳米科技平台与精准									
	治疗结合"提	供了关键支撑。								
完成单位情况表	₹									
单位名称	 中国医学科学	² 院肿瘤医院		排名	1					
对本项目的	中国医学科学	^丝 院肿瘤医院作为本项目第一完	成单位,为项目实施和科	学突破提供了关键保障	章 。					
贡献	1. 牵头开展"	基于 mRNA 可变剪接事件的 T	NBC 预后评分体系与 CCL	16 纳米干预系统研发	",首次揭示					
	CCL16 剪接3	变异与 TNBC 预后的关联,并构	沟建 CCL16 剪接恢复的纳米	长药物递送系统,增强	肿瘤微环境免疫					
	调控和治疗效	效果,支撑"靶点发现−机制解析	行—纳米干预"闭环路径。							
	调控和治疗效果,支撑"靶点发现—机制解析—纳米干预"闭环路径。 2. 依托孔祥溢教授主持的"乳腺肿瘤精准诊疗纳米科技研发平台",推进纳米药物逆转 HER2 阳性乳腺癌耐药、									
	TNBC 中药现代化纳米干预策略及前哨淋巴结无创诊断纳米探针等研究,取得重要临床转化成果。相关研究									
	 TNBC 中药现 	1代化纳米干预策略及前哨淋巴	结无创诊断纳米探针等研究	究,取得重要临床转化	公成果。相关研究					

程种子资金支持,促进纳米技术在乳腺癌精准诊疗中的应用。

- 3. 依托国家癌症中心科研平台,完成纳米药物研发、临床前评价与转化研究。借助丰富的肿瘤患者样本资源、临床转化平台、先进设备及高水平人才队伍,保障研究成果的临床适配性与转化价值。
- 4. 在人才培养方面,单位为项目负责人孔祥溢教授及其团队提供支持。孔教授入选"北京市优秀青年人才", 获国家卫生健康委"青年学习标兵"称号,体现单位在高层次人才培养与科研能力提升方面的贡献。
- 综上,中国医学科学院肿瘤医院在理论创新、技术突破和成果转化方面提供了核心支撑,为项目取得重大科学发现发挥了决定性作用。